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Abstract

Analytical expressions for controllability and observability grammian matrices and

Hankel singular values of discrete L TI flexible structures are derived. The approximate

formulae are simple and are based on physical parameters so that useful physical insights

in various aspects of flexible structures are possible. The diagonal dominance property

of the discrete grammians is shown which results in the invariance of the principal

directions. The approximate discrete Hankel singular values converge to the continuous

formula with increased sampling rate while the controllability and observability grammi-

ans go to zero and infinity respectively. It is also shown that the approximate formula
are accurate up to frequencies close to the Nyquist. The result is complementary to

earlier work on continuous time flexible structures.

1 Introduction

It is well known that degrees of controllability and observability for linear systems are

conveniently captured by the singular values of grammians. These singular values have

a wide range of applications from system identification and model reduction to actuator

and sensor placement for effective control and sensing configuration. Although the physical

interpretation and approximating formula has been investigated in detail in the past for

continuous systems (see for example, [1]-[9]), there is a significant lack of results for discrete

systems although the results are expected to be analogous to the continuous case. This need

for results in the discrete domain is painfully clear, for example, when a control engineer is

faced with the task of analysis and design of controllers for a large order model of a discrete

system.

*Research Engineer, Guidance & Control Branch, FDCD, MS 161, k.b.lim@larc.nasa.gov
tTechnical Staff, Communications Ground Systems, MS 144-201, wodek@gdansk.jpl.nasa.gov.



In this paper, analytical expressionsfor controllability and observabilitygrammianma-
trices and Hankel singular valuesof discrete LTI flexible structures are derived. Results
basedon two types of models for discreteflexible structures are given: (1) discretization
of continuoussystemsvia samplingand zero-order-holdand (2) implicitly discretemodels.
The first type of model is typically obtained by analytical meanswhile the secondtype
typically arisesfrom systemidentification. Derivations of the approximate singular value
formulas are given only for the first type of model and the results basedon the second
type of parameterizationare summarizedas corollaries. For the classof flexible structures
with smalldamping and distinct frequencies,the aboveformulaearesignificantlysimplified.
The approachis complementaryto the earlier resultson continuoustime flexible structures
reported in [5, 6, 7]. Similar to the continuouscase,the diagonaldominanceproperty of the
discretegrammians for small damping is shown. As a result, the approximateinvariance
of principal controllability and observability directionsalso hold for discrete time flexible
structures. The dependenceof the grammianson the samplingtime and in particular their
deviation from the correspondingcontinuousgrammian is investigated. In particular, it
is shownthat the approximate discrete Hankel singular values formula convergesto the
approximatecontinuousformula with increasedsamplingrate although the controllability
and observabilitygrammiansgo to zero and infinity respectively. It is shownby numerical
examplesthat the approximate formula for singular valuesof discrete controlability and
observabilitygrammiansand Hankel singular valuesareaccurateup to frequenciescloseto
the Nyquist frequency.Two levelsof damping areassumedto evaluatethe effectof violating
the assumptionof a lightly dampedflexible structure.

2 Flexible Structure

2.1 Continuous Time

Let the triple (A, B, C) denote a modal state-space representation of a flexible structure with

n structural modes• Following earlier definitions [6, 7, 8, 9, 10] define the modal state vector,

x, of dimension n2 x 1, where n2 = 2n, such that

X : ( Ill la31?]l

then the modal state equations take the form

where

On _nr/,_ )T (1)

diag(A,, • • •, A,_)x +

B1.

u (2)

Ai = -2(iwi -wi Bi. = bi C.i = Cri w'_Cdi
wi 0 ' 0 '

and i = 1,..., n, bi = ¢T E, Cdi = F_bi and c_i = G_bi. Notice that for small damping

0 < _i << 1 (5)



the above choice of the state vector gives the approximately normal state matrix and

hence approximately orthogonal eigenvectors. For flexible structures with distinct natural

frequencies, the steady-state controllability and observability grammians asymptotically (as

¢ --* 0) approach 2-by-2 block diagonal matrices as given in [6, 7, 10]

(6)

where

are the modal grammian coefficients [8, 9].

2.2 Discrete Time

Two different forms of parameterizations of the discrete flexible structures are considered.

The first form is used in the detailed derivations in the remaining sections and the results

based on the second form of parameterization are given as corollaries without details.

2.2.1 Sampled/Zero Order Hold Model

Consider a continuous flexible structure as defined by the block diagonal modal state space

representation in Section 2.1 and sampled at the outputs with period T and with a zero

order hold at the inputs. The state equation is given in this case by

x(k + 1) = Ax(k)+ i)u(k) (9)

y(k) = Cx(k) + Du(k) (10)

where C = C,/) = D while the discrete system matrices,/t and /) are given by

f_ _7_ eAT

= blk-diag(/i, (T),..., An(T)) (11)

[(k+l)T= eA((k+l)T-r)drB

dkT

_- blk_diag(fo T Al(_)d_,...,jo T fftn(_)d_)B (12)

where, denoting the damped frequency of the continuous structure as wui = wiV f_ - (/2 the

ith block of A is

iii(T)= 1 [-@visin(weiT)+weicos(we,iT) (13)Wd----T wisin(wdiT) (iwisin(wdiT) + WdiCOS(Wdi T)



2.2.2 Implicitly Discrete Model

In general, the state matrix of a discrete time model of a flexible structure may be fully

populated. The following defines a similarity transformation to block diagonalize the state
matrix:

Lemma 1 Let the quadruple (A_, Bz, Cz, Dz) denote the discrete state space matrices of a

flezible structure. Let (zi, vi) denote the ith eigenvalue and eigenvector pair of Az. The state

transformation matrix

V = [ Re(v1) -Im(vl)... Re(v,,) -Im(v,,) ] (14)

block diagonalizes the state equations as in Eqs. (9) and (I0) where

= blk-diag(Al(T),...,7tn(T)) (15)
[3 = V-1B=, O=CzV, D=D= (16)

and

[ Re(zi) -Im(zi) ]ii'i= Im(zi) Re(zi) • (17)

For a lightly damped flexible structure, its ith discrete eigenvalue lies just inside the unit
circle and can be written as

zi = e (-6'+j¢')T (18)

where 5i > 0. The fi,; matrix in Eq.(17) then becomes

[ c°s(g'iT) -sin(¢iT) ] e-_'T (19)Ai= sin(_iT) cos(¢iT)

Since the above discrete eigenvalue is related to the eigenvalue of the corresponding sampled

continuous signal by z = &T (see for example p.72 in [11]) the following analogy holds:

6i _ (iw_ (20)

_i _ wei (21)

2.3 Small Damping Approximation

Assuming that the sampling rate is sufficiently fast such that the sampling theorem is satisfied

(see for example p.lll in [11]), i.e.,
71"

w, < _ Vi (22)

one obtains from Eq.(5)

(iwiT << 1

The 2-by-2 block matrix A_ in Eq.(13) can be approximated by

(23)

7i_(T) ~=_i(T)e -¢'_''T (24)
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where _i(T) is an orthogonal matrix of the form

[ cos(wdiT)-sin(wdiT) ] (25)9{(T)= sin(wdiT) cos(wdiT)

Note that Eqs.(24) and (25) are analogous to Eq.(19). Using Eq.(24), the definite integral

in Eq.(12) reduces to

/_ % blk-diag(M1,...,Mn)B (26)

where

and

l[a,_b,]Mi = w] bi ai
(27)

ai = e -('_'T (-(iw/cos(waiT) + Wdisin(wdiT) ) + (/wi

= w/sin(wiT) + O((/) (28)

bi = e -Gw'T (-(iwisin(waiT) - WdiCOS(WdiT) ) +Wdi

= wi(1 - cos(w,T)) + O((/) (29)

3 Discrete Time Controllability Grammian

3.1 Definition

For the time interval (koT, kiT), the discrete time controllability grammian, Wc(ko, kl), is

defined in terms of the state transition matrix, _, and input matrix, B,

Wc(ko,k,)
k1-1

¢(kl, k + 1)##_(kl, k + a)
k=ko

Pc(_,, - ko)P?(_l - _o) (30)

where Pc(kl - ko) id the discrete time controllability matrix

ko)=[ B ... ] (31)

It can be shown that the above grammian satisfies the following equation

_Wc(ko, kl)_T .__ ##T =. Wc(]go, kl) .3i_ ap(ka,ko)[7[3rOT(k,,ko) (32)

For asymptotically stable linear systems, the last term in Eq.(32) vanishes as kl _ co. This

leads to the steady-state discrete time controllability grammian, Wc_¢, which satisfies the

following Sylvester equation
_Wcccff_T _._ Bf_T ___ HXcc ¢ (33)



3.2 Closed-Form Solution

By taking advantage of the 2 by 2 block diagonal form of the state matrix in Eq.(ll), the

Sylvester equation in Eq.(33) can be written as a set of 2-by-2 Sylvester equations

]ti[Wc_]ij]_ T + [Bf3T]ij = [Wc_]ij, i,j = 1,...,n (34)

where

and [W_lij

imated by

e-_'_'_,[W_],, ,_T_-_,_'r -[Wo_],j = -[hi_T],j
and equivalently by postmultiplying by the orthogonal matrix _j one obtains

_i[wo_],, -[Wc_lij%_71 = -[_t?r]_j%_; 1

,4i = Ai(T) (35)

[B[3T]ij = fooT .4i(_)d_ BiB T fo T ]tj(_)d_ (36)

is the (i,j)th 2 by 2 block of [Wco_]. For small damping, Eq.(34) can be approx-

(37)

(38)

where

c_i = e -_°''r (39)

After some manipulation, it can be shown (see Appendix A) that the solution for the

steady state discrete time controllability grammian for flexible structures is given as follows:

Proposition 1

[W_cc]iJ "V= /3_j22Re([ 1 J ] [QiJ]aa + [ -1 -j ] [QiJ]21) (40)2w i wj --j 1 Pij -j 1 [.tij

where

[Qij]_ = _j {aiaj + bibi + j(biaj -aibj)} (41)

[Qij]21 = )_J {-aiaj + bibj + j(biai + aibj)} (42)

Pij = OiAi -- o-flAj (43)

Ftij = Oti/_--otfl/_j • (44)

For the state space parameterized as in Eqs.(15) to (17) the following results hold:

Corollary 1

[w_=]_j-

where

([ ]1 Re 1 j [0ij]'ll + -- , i,j = 1,...,n (45)
2&j --j 1 Pij --j 1 #0

[QiJlll = zj {aij + d 0 + j(cij - bij)} (46)

[QiJ]2, = zj {-aij + dij + j(c 0 + bij)} (47)

_o = _;z, - _-'z, (48)

#o = &iz7-(VflzJ (49)

6i = e -_'T " (50)



In the above corollary, zi denotes the ith discrete eigenvalue defined by Eq.(18) while aij,

bij, cij, and dij are the input matrices defined by

a bij ] (51)

Note that Corollary 1 is an exact relationship.

3.3 Diagonal Dominance of the Grammian

The denominator scalars in Eq.(40) can be expanded as follows

pq (1 + (,wiT)A_ (1 + (jwjT)._j + 0((3)

where hi is the i-th discrete eigenvalue of the i-th 2-by-2 orthogonal matrix _;.

off-diagonal block matrices where i :/: j

#ij = ,_ - )_j (iwiT(._ + )_j) + 0((3)

For the diagonal block matrices where i = j

_. = ;_;- :_ - (_,T(_; + _,) + 0(¢3)

(52)

For the

,._ [ 1i-Aj]= A_ Aj (53)

(iwiTAi ] (54)-2 jsin(wiT)

Figure 1 shows the undamped discrete eigenvalues and denominator scalars pij and ttij in the

|m

Figure 1: Discrete eigenvalues of undamped flexible structure

complex plane. For small damping, the eigenvalues lie close to the unit circle, i.e., multiplied

by the scalar Oi (see Eq.39). Notice from figure 1 that if the system has distinct complex

conjugate poles, the vectors ,ki and _j will never be collinear if i ¢ j so that pij ¢ 0 and

_ij :/: 0. From Eqs.(53) and (54), note that only the denominator factor pii asymptotically



approaches zero as the damping ratio approaches zero. Since ai, aj, bi, bj are constants, the

numerator factors, [QiJ]al and [Qi_]21, in Eq.(40) are also constants. This means that the

diagonal block matrices of the grammian, [Weoo]ii, which contains the denominator factor

pii, can be arbitrarily large as _i _ 0 while the magnitude of the off-diagonal block matrices,

[Wc=]ij is fixed. Thus the controllability grammian matrix for discrete flexible structures is

diagonally dominanant. Consider only the block diagonal terms, for i = j. Eqs.(41) and

(42) simplify to

[Qi,],, = )_,(a_ + by) _- 2w_i(1 - cos(wiT)) (55)

[Q"]21 = )_i(b, + jai): _- 2wi(1 -cos(wiT)) (56)

Using Eqs.(55) and Eqs.(56), the block diagonal grammian in Eq.(40) can be simplified to
the form

[Wc_]ii -_ _(1 -cos(wiT)) ¢,--y sm(_,T) (57)
2033 1Sln(_,T) (-_

Furthermore, only the diagonal elements of the block diagonal matrix are inversely propor-

tional to the damping so that the simplest approximation form can be written as follows

Proposition 2

where

~ t (5s)[Wool. = "rci2×_

%__ /_ 2(1 - cos(03iT))
4¢i03i * w?T " (59)

The first term in Eq.(59) corresponds to the ith controllability grammian for the corre-

sponding continuous system. The term _ii corresponds to the ith modal grammian for

controllability.

Similarly for the state space parameterized as in Eqs. (15) to (17), the diagonal dominance

of [Wco_]ii in Eq.(45) holds because it contains the denominator factor /_ii which can be

arbitrarily large as ¢'i ---' 0. After some algebra, it follows that the block diagonal grammian

in Eq.(45) can be expressed as

[W_o_]. - 4_ \ 5_T I2×: + 2bii -a. + di, + tan(_,T) a. - d,i 2bi,

(60)

Furthermore, only the first term in Eq.(60) is inversely proportional to damping so that the

simplest form of the approximation can be written as

Corollary 2

45iT 12×2 • (61)

4 Discrete Time Observability Grammian

4.1 Definition

For the time interval (koT, k_T), the discrete time observability grammian, Wo(ko, ka), is

defined similarly to the controllability grammian in terms of the state transition matrix, ¢,



and output matrix, C'

Wo(ko,k,)
kl --1

= _ ¢T(k,,k+ 1)cTdO(kl,k+ 11
k=ko

= po_(kl- ko)Po(k,- ko)

where the discrete observability matrix is

(62)

d
CA

(63)Po(kl - ko) =

CAkl-ko-1

It can be shown that the above grammian satisfies

ftTWo(ko, kl)ft + cTc = Wo(ko, kl) + ¢(kl,ko)TCTd¢(kl,ko) (64)

For asymtotically stable linear systems, the last term in Eq.(64) vanishes as kx ---* oo. This

leads to the steady-state discrete time observability grammian, Wooo, which satisfies the

Sylvester equation

ArWooo_ + drd = wo_ (65)

4.2 Closed-Form Solution

Analogous to the controllability case, (A,/?) can be replaced by (ii, T, _T) so that a set of

2-by-2 Sylvester equations for the observability grammian satisfies

fiT[wo_]ijfij + [cTc]ij = [Wooo]ij, i,j = 1,... ,n (66)

where [Wo_]ij is the (i,j)th 2-by-2 block of [Wo¢¢]. With the same approach as taken in
Section 3.2, it can be shown (see Appendix B) after some algebra that the solution for the

steady state discrete time observability grammian for flexible structures is given as:

Proposition 3

where

,,. 1Re 1 -j [Rij]22 +
[Wooo]ij= 2 j 1 Pij j 1 I_0 /

[Rij]22 (68)

[R/j]12 • (69)

For the state space parameterized as in Eqs.(15) to (17) analogous results hold. However,

the output matrix appears in a different form. The outer product of the output matrix for

the (i,j) block becomes

[drd]_ = ¢_¢.j (70)

[_,, _12] (71)

9



where

C.i = C,[Re(vi),-Im(vi)] (72)

_1 = Re(vi)TcTCzRe(vj) (73)

_ = -Re(vi)W cT C, Im(vj) (74)

$/21 = _Im(vi)TcTC, Re(vj) (75)

_} = Im(vi)TcTCzIm(vj) (76)

Note the symmetry for i = j

6_,' = _} (77)

This different form of the state and output matrix leads to the following result for the (i,j)

block of the observability grammian.

Corollary 3

1 Re 1 -j [/_ij]_2 + __ (78)
[Wooo]ij-- 2&j j 1 Pij j 1 ft 0 /

where

[1 /j]l2 = Zj{--_ 11 • (80)

Note that the above corollary is an exact relationship and is very similar in form to the

approximation in Proposition 3.

4.3 Diagonal Dominance of the Grammian

The diagonal dominance argument for the observability grammian is similar to the controlla-

bility case. From Eqs.(53) and (54), note that only the denominator factor pii asymptotically

goes to zero as the damping ratio approaches zero. Since the terms 6ikJare fixed constants, the

numerator factors, [R_j]22 and [Rij]12, in Eq.(67) will also be fixed constants. This means that

the diagonal block matrices of the grammian, [Wooo]ii, which contains the denominator factor

pii, can be made arbitrarily large as {i ---+ 0 while the off-diagonal block matrices, [W_cc]ij

will not. This represents the diagonal dominance property of the observability grammian for

discrete flexible structures. Therefore, consider only the block diagonal terms.

After some algebra, the block diagonal observability grammian in Eq.(67) can be reduced

to the form

1 (,Sii + 6ii I2x: + -" 1=-" 26_/_ 1 2_5:/2 -_5:i' + 6/=/=
[Wooo]ii _- _ \ (iwiT 26, -6_, 1 + 6_} + tan(_,,iT) -6_i' + 6_i2 -26_i 2

(81)

Furthermore, only the first term in Eq.(81) is inversely proportional to damping so that the

simplest form of the approximation can be written as follows

10



Proposition 4

where

"+ %;12×5 (82)

4(iwiT

4(;wi T
• (83)

The first term in Eq. (83) corresponds to the ith observability grammian for the corresponding

continuous system.

Similarly for the state space parameterized as in Eqs.(15) to (17), the diagonal dominance

of [Wc_]_i in Eq.(78) holds because it contains the denominator factor pi_ which can be

arbitrarily large as (i --+ 0. After some algebra, it follows that the block diagonal grammian

in Eq.(78) can be expressed as

1 [_ilq-_i2|7--=-2T q- -4 (_i [-A1 -As ])[wo_];;
2&i \_i (q I2×2 ai-2a_c_s(2@T)+l -A2 Aa

(84)

where

A, = (-5_i' + _,?)(&_cos(2¢iT)- 1) + 2$_i2&_sin(2_biT)

A2 = (-_i I + 5_)6_sin(2tbiT)- 25]/2(&_cos(2_biT)- 1)

(85)
(86)

Furthermore, only the first term in Eq.(84) is inversely proportional to damping so that the

simplest form can be written as the approximation below.

Corollary 4

[WoA._- _P + aJI_×_? • (87)
4,5iT

5 Hankel Singular Values for Discrete Flexible Struc-

tures

Due to the diagonal dominance property of the discrete controllability and observability

grammian for flexible structures, the square of the ith Hankel singular value follows from

Propositions 2 and 4:

Proposition 5

_._ 2 2
= '_oi"[ci

1 2T

_ S_(?r2(1 - cos(,.,,_T))b;br(c_;ce,+,.;c_c_) • (ss)

Similarly, for the state space parameterized as in Eqs.(15) to (17), Corollaries 2 and 4 lead

to the approximate Hankel singular values

11



Corollary 5

7_ _- (aii + d,,)(_, 1 + _")I2×2_ • (89)
(4_;T) _

Let the factors of deviations of the singular values of the discrete grammians from the

singular values of the continuous grammians (as given by Eq.(6)) be defined by the following

for the/th mode:

Ci =

Oi --

2(1 - cos(wiT)) (90)
wiT

1 (91)
T

In the limit when the sampling period approaches zero, the singular values of the scaled

discrete grammians converge to continuous values while the discrete Hankel singular value

approaches the Hankel singular value of the continuous system [5, 6, 7] as follows:

Proposition 6

1

l_mo Ci • _ = 1T

oi* T = 1

limT_ = (13iiOi_
T--*O \ 4_'_w_J

(92)

(93)

(94)

where fl_ and O_ are defined by Eqs.(7) and (8). •

Note that without the sampling period scaling factor, the discrete controllability grammian

approaches zero while the discrete observability grammian approaches infinity. This result

is consistent with the earlier and more general result involving principal component analysis

(see Proposition 7, [4]). In addition, the above convergence of the discrete to continu-

ous Hankel singular values for flexible structures is analogous to the more general result

(Proposition 8, [4]) where the singular values of the discrete Hankel matrix converges to the

corresponding singular values of the grammians for the balanced system. For the state space

parameterized as in Eqs.(15) to (17), the Hankel singular value dependence on the inverse

square of the sampling period in Corollary 5 cancels with the numerator factor (aii -t- dii)

which is proportional to square of the sampling period as indicated by Eqs.(12) and (51).

Indeed, similar results hold for the above type of parameterization in that the controllability

and observability grammians go to zero and infinity respectively, with decreasing sampling

period.

The relationship between the discrete Hankel matrix PoPe [4, 12] and the approximate

formula for the Hankel singular values F _ given in Eq.(88) is given below.

Proposition 7 Define the SVDs 19o = UoEol/oT, and Pc = UcEcVf , then

PoPe = R(WoWc) ½ST "_= RF2S T (95)

where R = UoV T and S = V_U [, and RTR = I = sTs. •

12



For comparison purposes with respect to the singular values of the continuous grammians,

1 and oi * T are used. This additional sampling period factor makes thethe factors ci *

singular values of the discrete grammian physically consistent with continuous singular

values. Figure 2 shows the effect of sampling on the singular values of the observability and

1

0.8

0.6

0.4

0.2

q

ol'_V

0.5 1 1 .5 2
f IIf N YC;i

Figure 2: Effect of sampling: deviations from continuous singular values

controllability grammians and the Hankel singular values as compared to the corresponding

continuous singular values. At high sampling rates (for instance _' < .2), the predicted
_NYQ --

discrete singular values are close to the corresponding continuous singular values. Both the

controllability and Hankel singular values decrease with slower sampling rate. The exact

discrete singular values are expected to drop significantly in the neighborhood of Nyquist

frequencies. This singularity near Nyquist is not predicted by the approximate analytical

formula. In particular, the observability factor remains constant which is counter intuitive

and hence this approximation appears to fail near the Nyquist frequency.

6 Example

To validate the analytical formula, the exact and approximate grammians are computed for a

former NASA experimental structure called the Control-Structures Interaction Evolutionary

Model (CEM) and is described in more detail in [8, 9]. A total of eight air thrusters are

selected along with three displacement sensors. The structural model consists of n2 = 12

modes whose first six modes are suspension modes. The frequencies are closely spaced and

lightly damped, which is a typical phenomenon for this kind of structure. The natural

frequencies and damping ratios for the twelve structural modes of interest are shown in table

1. Case 1 assumes 1% damping ratio while case 2 assumes 5 % damping ratio for all modes.

Note that a flexible structure with 5 % damping ratios for all modes (case 2) will not usually

be considered as lightly damped. This significant level of damping is used for the purpose

of evaluating the level of the approximation errors in the singular value formulas.

Figure 3 shows the comparisons between the exact Eq.(33) and the approximate singular

values of the controllability Eqs.(57,58) and observability Eqs.(81,82) grammians and Hankel

13



Table 1: Twelve modes of CEM structure.

Mode i wi (rad/sec) ¢i (Case 1) ¢i (Case 2)

1

2

3

4

5

6

7

8

9

10

11

12

0.9297

0.9409

0.9733

4.6238

4.7524

5.6140

9.4103

14.5468

15.2908

15.5415

16.2741

18.2922

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

singular values Eq.(88). The three rows of plots in figure 3 correspond to the sampling rates
of

fNYQ -- maxi fi
q = = 100, .1, .0001 (96)

maxi f i

where max; fi = _ The first two rows from figure 3 representing normalized sampling rates
2"n" "

of q = 100 and .1, show that the approximate formula predicts the singular values accurately,

up to frequencies near 90 % of Nyquist frequency. However, the last row of plots (q = .0001)

show a near singular condition represented by a large drop in the smallest singular value

with increased errors in the remaining singular values. However, the last row corresponds to

frequencies very close to Nyquist i.e., q = .0001.

Figure 4 shows RMS error plots of the approximate diagonal singular values for both

types of approximations as a function of sampling rate, 2 * fNYO. Each error of the singular

value is normalized by the corresponding exact value. The figure shows that the approximate

formula predicts quite accurately down to Nyquist frequencies that are only 10 percent higher

than the fastest mode. The normalized RMS error is dominated by errors in the smallest

singular values consistent with figure 3.

To evaluate the effect of larger damping ratios (case 2) in the approximate formulas for

the singular values at different sampling frequencies, figure 5 shows the comparisons between

the exact Eq. (33) and the approximate singular values of the controllability and observability

grammians and Hankel singular values. The three rows of plots in figure 5 corresponds to the

sampling rates in case 1. As in the lighter damping case, the approximate formula predicts

the singular values accurately, up to frequencies near 90 % of Nyquist frequency. The last

row of plots similarly shows a near singular condition represented by a large drop in the

smallest singular value with increased errors in the remaining singular values.

Figure 6 shows the approximate diagonal singular values as a function of sampling rate.

Figure 6 shows that the approximate formula predicts quite consistently down to Nyquist

frequencies that are only 10 percent higher than the fastest mode. The normalized RMS

error is again dominated by errors in the smallest singular values consistent with figure 5.

The RMS error significantly increases with the five fold increase in damping ratios. However,
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it is noted that the damping ratios for case 2 are too large to be considered a lightly damped
flexible structure.

7 Conclusions

The results complement earlier work on continuous time flexible structure. For flexible struc-

tures modeled in discrete time, analytical expressions for singular values of controllability

and observability grammian matrices and Hankel singular values are derived and validated

through numerical examples. For the class of flexible structures with small damping and

distinct frequencies, the above formulae are significantly simplified. It is found that the

approximate formula is quite accurate up to near Nyquist frequencies. The discrete Hankel

singular values converges to the approximate continuous formula with increased sampling

rate. The simple but accurate approximate formula could provide useful physical insights

in the selection of actuators and sensors, model reduction, and controller designs for flexible

structures modeled in discrete time.
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A Proof of Proposition 1

By modal decomposition of the orthogonal 2 by 2 matrix in Eq.(25)

_i = XiAi XH

where

(97)

Ai = diag(Ai, AT) = diag(d _d'T, e -j''d'r) (98)

1 [J -J] =X.i (99)Xi - v,"2 1 1

Eq.(38) can be decomposed, after premultiplying by X H and postmultiplying by Xj to obtain

aiAiXin[Wco_]oXj_ H ,- -,=X i [Wco_]oXjAjaj -xH[BjBT]oXjAjo'f I (100)

It follows that the four elements of the 2-by-2 matrix, [Wc_o]ij, satisfy

(101)
n .[W. 111 * ~ 12 ]

riJt cooJij .ij[Wcoolij
~ 21 * 22
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where

[Wcoo]ij-- Xi[l_coo],j XH (102)

[- ,1 - 1_][Wcoo]ij -- - 21 ~ 22 (103)

Qo = -XH[BBT]'jXjAja71 (104)

and pij and #_j are defined by Eqs.(43) and (44). For small damping, Eq.(26) can be used

to simplify the outer product [BBT]ij appearing in Eq.(104) to

[BBT]ij __ [blk-diag(M1,...,i,)BBTblk-diag(M,,...,Mn)T]o

= Mi[BBT]ijM T (105)

Using the expression M_ in Eq.(27) and [BBT]_j where

[BBTI_j = B_BT (106)

0 ] (107)

where Bin is defined by Eq.(7), the expression in Eq.(105) can be expanded to

[[_ffr],j,._= _J2 2 [ a_aJb_aja_bJ ]b_bj (10S)
w i wj

Using Eqs.(98,99,108), Q_j in Eq.(104) can be approximated as

Q,j._= B_2 _ [ [Q,J]I_ [Q,J];_. ] (109)
2wiwj [Qij]21 [QiJ]ll

where [QiJ]n and [Qij]:l are defined in Eqs.(41) and (42). From Eq.(101), the 2 by 2 matrix

[_'co¢],j can be written as

,_ fl_j [ _,j[QiJ]11__,j[Qij]2I ]11 • (110)[w_],j = -_ 1 1 •
2wiwj _-_,: [QiJ]21 p--_j[Qi/] H

Finally, Eq.(40) is obtained from Eq.(102) and (110).

B Proof of Proposition 3

With the same approach as taken in the proof of Proposition 1, it can be shown that

= ~ 11 ~ 12 ]. * [I]_" ]21 ~ 22 (111)
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where

[Woco]ij = Xi[I;Voo_]ij XH (112)

[ [W, .11 - 12 ]

L o_l_j [Wo_]_j
[l_Vo_]ij = "I/_, .21 - 22 (113)l o_hj [Wo_],s

R,j = -Xitt[cTd]ijXjAya-;1 (114)

where pij and #ii are given in Eqs. (43) and (44). The output matrix product, [C,Tc]ij can

be written as

[dTd];_ T= C.iC.j

Crier j _-;CriCdj
1 T 1 T

_,,CdiC_j _,,,o-----TCdiCdj

=[',ii ] ,11 ,
Note that for i = j, _i ] = (_1i2. For the special case of rate sensors only,

_11 = T (116)CriCrj,:/= ,:1= ,:_= 0;
while for the case of displacement sensors only,

_1/=_:1= _:)= o;
T

_- CdiCdj (117)
o3io2j

It can be shown that Rij in Eq.(ll4) can be approximated as

[ ]1 [Rij]22 [Rij]12 (118)
/i_"7 _ 2 [/_iJ]12 [R,j122

where [R0122 and [n,j],2 are given by Eqs.(68) and (69). Finally, after some algebra, [Wooo]ij

given by Eq.(67) is obtained.
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Figure 3: Exact and approximate singular values of grammians for CEM structure; q = (fNYQ --
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